Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(3): 487-496.e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471458

RESUMO

Co-culture of intestinal organoids with a colibactin-producing pks+E. coli strain (EcC) revealed mutational signatures also found in colorectal cancer (CRC). E. coli Nissle 1917 (EcN) remains a commonly used probiotic, despite harboring the pks operon and inducing double strand DNA breaks. We determine the mutagenicity of EcN and three CRC-derived pks+E. coli strains with an analytical framework based on sequence characteristic of colibactin-induced mutations. All strains, including EcN, display varying levels of mutagenic activity. Furthermore, a machine learning approach attributing individual mutations to colibactin reveals that patients with colibactin-induced mutations are diagnosed at a younger age and that colibactin can induce a specific APC mutation. These approaches allow the sensitive detection of colibactin-induced mutations in ∼12% of CRC genomes and even in whole exome sequencing data, representing a crucial step toward pinpointing the mutagenic activity of distinct pks+E. coli strains.


Assuntos
Neoplasias Colorretais , Escherichia coli , Peptídeos , Policetídeos , Humanos , Escherichia coli/genética , Mutação , Dano ao DNA , Mutagênicos , Organoides
2.
Gut ; 72(7): 1410-1425, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147013

RESUMO

The microbiome may impact cancer development, progression and treatment responsiveness, but its fungal components remain insufficiently studied in this context. In this review, we highlight accumulating evidence suggesting a possible involvement of commensal and pathogenic fungi in modulation of cancer-related processes. We discuss the mechanisms by which fungi can influence tumour biology, locally by activity exerted within the tumour microenvironment, or remotely through secretion of bioactive metabolites, modulation of host immunity and communications with neighbouring bacterial commensals. We examine prospects of utilising fungi-related molecular signatures in cancer diagnosis, patient stratification and assessment of treatment responsiveness, while highlighting challenges and limitations faced in performing such research. In all, we demonstrate that fungi likely constitute important members of mucosal and tumour-residing microbiomes. Exploration of fungal inter-kingdom interactions with the bacterial microbiome and the host and decoding of their causal impacts on tumour biology may enable their harnessing into cancer diagnosis and treatment.


Assuntos
Microbiota , Neoplasias , Humanos , Simbiose , Fungos , Bactérias , Neoplasias/diagnóstico , Microambiente Tumoral
3.
Microbiol Spectr ; 10(3): e0105522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35587635

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is consistently found at higher frequency in individuals with sporadic and hereditary colorectal cancer (CRC) and induces tumorigenesis in several mouse models of CRC. However, whether specific mutations induced by ETBF lead to colon tumor formation has not been investigated. To determine if ETBF-induced mutations impact the Apc gene, and other tumor suppressors or proto-oncogenes, we performed whole-exome sequencing and whole-genome sequencing on tumors isolated after ETBF and sham colonization of Apcmin/+ and Apcmin/+Msh2fl/flVC mice, as well as whole-genome sequencing of organoids cocultured with ETBF. Our results indicate that ETBF-induced tumor formation results from loss of heterozygosity (LOH) of Apc, unless the mismatch repair system is disrupted, in which case, tumor formation results from new acquisition of protein-truncating mutations in Apc. In contrast to polyketide synthase-positive Escherichia coli (pks+ E. coli), ETBF does not produce a unique mutational signature; instead, ETBF-induced tumors arise from errors in DNA mismatch repair and homologous recombination DNA damage repair, established pathways of tumor formation in the colon, and the same genetic mechanism accounting for sham tumors in these mouse models. Our analysis informs how this procarcinogenic bacterium may promote tumor formation in individuals with inherited predispositions to CRC, such as Lynch syndrome or familial adenomatous polyposis (FAP). IMPORTANCE Many studies have shown that microbiome composition in both the mucosa and the stool differs in individuals with sporadic and hereditary colorectal cancer (CRC). Both human and mouse models have established a strong association between particular microbes and colon tumor induction. However, the genetic mechanisms underlying putative microbe-induced colon tumor formation are not well established. In this paper, we applied whole-exome sequencing and whole-genome sequencing to investigate the impact of ETBF-induced genetic changes on tumor formation. Additionally, we performed whole-genome sequencing of human colon organoids exposed to ETBF to validate the mutational patterns seen in our mouse models and begin to understand their relevance in human colon epithelial cells. The results of this study highlight the importance of ETBF colonization in the development of sporadic CRC and in individuals with hereditary tumor conditions, such as Lynch syndrome and familial adenomatous polyposis (FAP).


Assuntos
Polipose Adenomatosa do Colo , Infecções Bacterianas , Neoplasias do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Animais , Infecções Bacterianas/patologia , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Colo/microbiologia , Neoplasias do Colo/genética , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Modelos Animais de Doenças , Escherichia coli/genética , Genes APC , Camundongos , Mutação
4.
Nat Protoc ; 16(10): 4633-4649, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34381208

RESUMO

Adult-stem-cell-derived organoids model human epithelial tissues ex vivo, which enables the study of host-microbe interactions with great experimental control. This protocol comprises methods to coculture organoids with microbes, particularly focusing on human small intestinal and colon organoids exposed to individual bacterial species. Microinjection into the lumen and periphery of 3D organoids is discussed, as well as exposure of organoids to microbes in a 2D layer. We provide detailed protocols for characterizing the coculture with regard to bacterial and organoid cell viability and growth kinetics. Spatial relationships can be studied by fluorescence live microscopy, as well as scanning electron microscopy. Finally, we discuss considerations for assessing the impact of bacteria on gene expression and mutations through RNA and DNA sequencing. This protocol requires equipment for standard mammalian tissue culture, or bacterial or viral culture, as well as a microinjection device.


Assuntos
Intestinos , Organoides , Técnicas de Cocultura
6.
Cell ; 181(6): 1291-1306.e19, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32407674

RESUMO

Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.


Assuntos
Células Enteroendócrinas/metabolismo , RNA Mensageiro/genética , Células Cultivadas , Hormônios Gastrointestinais/genética , Trato Gastrointestinal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Humanos , Organoides/metabolismo , Fatores de Transcrição/genética , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 117(19): 10357-10367, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32345720

RESUMO

Cystic fibrosis (CF) is a recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The most common symptoms include progressive lung disease and chronic digestive conditions. CF is the first human genetic disease to benefit from having five different species of animal models. Despite the phenotypic differences among the animal models and human CF, these models have provided invaluable insight into understanding disease mechanisms at the organ-system level. Here, we identify a member of the ABCC4 family, CG5789, that has the structural and functional properties expected for encoding the Drosophila equivalent of human CFTR, and thus refer to it as Drosophila CFTR (Dmel\CFTR). We show that knockdown of Dmel\CFTR in the adult intestine disrupts osmotic homeostasis and displays CF-like phenotypes that lead to intestinal stem cell hyperplasia. We also show that expression of wild-type human CFTR, but not mutant variants of CFTR that prevent plasma membrane expression, rescues the mutant phenotypes of Dmel\CFTR Furthermore, we performed RNA sequencing (RNA-Seq)-based transcriptomic analysis using Dmel\CFTR fly intestine and identified a mucin gene, Muc68D, which is required for proper intestinal barrier protection. Altogether, our findings suggest that Drosophila can be a powerful model organism for studying CF pathophysiology.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/patologia , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Intestinos/patologia , Mutação , Células-Tronco/patologia , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase , Humanos , Mucinas/genética , Mucinas/metabolismo , Fenótipo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...